(Phys.org) —While the natural world is replete with compounds that form the basis of many disease-fighting pharmaceuticals, it is also the case that humans and other mammals produce their own host-defense peptide-derived broad-spectrum antibiotics to combat bacterial and fungal infections. By attacking microbial cell membranes, these peptides prevent bacteria from developing rapid antibiotic resistance. While over 1,700 of these peptides are known, the structural and mechanical aspects of their functional activity have remained an unanswered question. Recently, however, scientists at Max Planck Institute for Biophysical Chemistry, Max Planck Institute for Developmental Biology, The University of Edinburgh, and other instiutions1 determined the X-ray crystal structure as well as solid-state nuclear magnetic resonance (NMR) spectroscopy, electrophysiology, and molecular dynamic (MD) simulations of human dermcidin (DCD), revealing its mechanism at atomic scale. The researchers conclude that their results may lead to the peptide structure-based design of second-generation antibiotics.
↧